Tricuspid and Pulmonic Regurgitation: Echocardiographic assessment

Joseph L. Blackshear, M.D.

No Disclosures

Joseph L. Blackshear, M.D.

44 year old man with end stage liver disease

- Alcoholism
- Anemia, fatigue, jaundice
- Intermittant UGI bleeding
- Then 60 lb weight gain with ascites
- Hospitalized for stabilization and consideration of transplant
- Oliguria after dye procedure
- Creatinine 3.6 and grossly volume overloaded, pulsatile liver
TR – clinical correlations

- ≥ moderate usually “functional” – right ventricular (RV) dilatation, distortion of the subvalvular apparatus
- Tricuspid annular dilatation
- Symptoms and signs
 - Fatigue
 - Decreased exercise tolerance
 - Peripheral edema / anasarca
 - Hepatic congestion, enlargement in 90%
 - Pulsatile liver noted inconsistently
 - Decreased appetite
 - Abdominal fullness / ascites
 - JVD with V wave in 35%-75%
- Holosystolic murmur LSB ↑ with inspiration
- Noted in <20% severe TR due to equalization
- ↑ RA mean pressure

TR - causes

- Functional: due to RV dilatation from other cause
- Endocarditis
- Trauma
- Carcinoid heart disease
- Rheumatic heart disease
- TV prolapse
- Trauma/iatrogenic (radiation, drugs, biopsy, device lead)
- RV dysplasia
- Endomyocardial fibrosis
- Primary or secondary pulmonary hypertension
- Atrial septal defect / anomalous PV drainage

TR natural history

- Prolonged latent period, then:
 - RV and RA volume
 - AF common secondary to ↑ RA
 - R-CHF palliated with diuretics
 - Hepatic congestion + anorexia
 - Reduced exercise capacity
- Reduced longterm survival
- Symptoms improved in 88% operated patients
- ↑ death noted in unoperated group

Survival and TR severity
Nash J, JACC 2004;43:405-409
TR: AHA/ACC Class I and IIA indications
- Class I
 - TV repair is beneficial for severe TR in patients with MV disease requiring MV surgery
- Class IIa
 - TV replacement or annuloplasty is reasonable for severe primary TR when symptomatic
 - TV replacement is reasonable for severe TR secondary to diseased/abnormal TV leaflets not amenable to annuloplasty or repair

TR, AHA/ACC Guidelines continued
- Class IIb
 - "< severe TR in patients undergoing MV surgery if PHT and TV annular dilatation
 - Not indicated if RVSP ≥ 60 mm Hg in the presence of a normal MV
 - TV replacement or annuloplasty is not indicated in patients with mild TR

ECS Guidelines
- Class I
 - Severe TR in a patient undergoing left-side valve surgery
 - Severe primary TR and symptoms despite medical therapy without severe RV dysfunction
- Class IIa
 - Moderate organic TR in a patient undergoing left-sided valve surgery
 - Moderate secondary TR with dilated annulus (40 mm) in a patient undergoing left-side valve surgery
 - Severe TR and symptoms; after left-side valve surgery; in the absence of left-sided myocardial, valve, or RV dysfunction; and without severe PHT
 - (systolic pulmonary artery pressure ≥ 60 mm Hg)

Echo in TR: 80-90% prevalence
- Severity, and cause of TR
- Impact on RV
 - RIMP
 - Displacement TV annulus with tissue Doppler imaging-TAPSE
 - dP/dt
 - Myocardial acceleration during isovolumic contraction
- Dense “dagger-shaped” early peak CW=severe TR
- Severe TR by vena contracta ≥0.7 cm
- PISA
- Others: ↑ IVC, HV systolic reversal – sensitive but also present in AF with < severe TR

ER and regurgitant volume in TR vs MR
Tribouilloy, CM, J Am Soc Echocardiogr 2002;15:958-
TR views, ± color

- RV inflow view
- PSAX
- Apical 4 chamber view
- SC 4 chamber view
- R sided chamber, IVC size
- Septal motion

PW, CW Doppler in TR

- Interrogate VC, PISA, forward and regurgitant spectra in ≥ 2 imaging planes
- Massive TR usually with CW velocity ≤ 2 m/sec due to equalization
- Dense, early peaking, triangular profile, with augmented diastolic flow
- TV E ≥ 1 m/sec = very severe TR
- Hepatic vein: normally dominant systolic flow becomes blunted, eventually reversed (80% sensitive), but affected by AF, ↑ RA pressure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricuspid valve</td>
<td>Usually normal</td>
<td>Normal or abnormal</td>
<td>Flail, poor coaptation, etc</td>
</tr>
<tr>
<td>RV/RA/IVC size</td>
<td>Normal</td>
<td>Normal or dilated</td>
<td>Usually dilated</td>
</tr>
<tr>
<td>Jet area, central jet (cm²)</td>
<td>< 5</td>
<td>5-10</td>
<td>>10</td>
</tr>
<tr>
<td>VC width (cm)</td>
<td>Not defined</td>
<td>Not defined, but < 0.7</td>
<td>> 0.7</td>
</tr>
<tr>
<td>PISA radius (cm)</td>
<td>≤ 0.5</td>
<td>0.6-0.9</td>
<td>> 0.9</td>
</tr>
<tr>
<td>CW jet density, contour</td>
<td>Soft and parabolic</td>
<td>Dense, variable contour</td>
<td>Dense triangular, early peaking jet</td>
</tr>
<tr>
<td>Hepatic vein flow</td>
<td>Systolic dominance</td>
<td>Systolic blunting</td>
<td>Systolic reversal</td>
</tr>
</tbody>
</table>

Severe TR, nl RVSP, “mirror image” to and fro flow
67 year old woman

- Sudden onset class III dyspnea
- Found to be in new atrial fibrillation
- No prior echo studies

63 year old woman

- St Jude AVR 10 yr prior
- Edema, fatigue
- Outside workup raised? Constrictive pericarditis
- JVD, hepatomegaly, pulsatil liver

Therapeutic / surgical considerations

- Correctable causes:
 - Pacer lead impingement
 - Pulmonary hypertension (PHT) 2° OSA
- Non-correctable: TR due to primary pulmonary hypertension, or secondary to pulmonary thromboemboli
- Symptom Rx: diuretics, fluid Na+ restriction
- Bowel edema renders oral diuretics ineffective
- Diuretics improve edema but may worsen fatigue and dyspnea.
- Surgical Indications:
 - Severe TR and symptoms
 - Mitral valve disease or other cardiac disease requiring surgery
 - Progressive RV enlargement or dysfunction
 - Traumatic TV flail with severe TR
- Carcinoid patients high-risk - perioperative profound peripheral vasodilatation and hypotension – Rx with octreotide
Color Quantitation

- PISA method more challenging than MR
- Vena contracta > 0.7 cm 0% sensitive and specific
- Eccentric jets problematic
- Record in multiple imaging planes
- Look for congruency of multiple indicators

Surgery discussed

“The outlook for patients who have previously undergone left-sided valvular surgery who subsequently present with symptomatic severe TR is less optimistic. Repeat surgery to specifically address TR in these patients can be performed with acceptable early mortality (8.8%)…”

- Trial of medical therapy offered
- Returns two months later, asymptomatic

Bruce CJ, Connolly HM (Circulation. 2009;119:2726-2734.)
Pulmonic Regurgitation - 40-78% of echos
- Pathology rare, usually with other structural disease
- PR severity evaluation is generally qualitative, since quantitative standards lacking
- Think:
 - Pulmonary hypertension
 - Carcinoid
 - Post valvotomy PS
 - Congenital, ie tetralogy post patch PA repair

PR: 2D views
- Parasternal short axis RVOT view
- Subcostal short axis
- Primary abn: bicuspid, quadricuspid, doming, prolapse, hypoplasia
- Pulmonary artery size and number
- RV size and function
- Septal motion, LV shape

Doppler in PR
- Jet size, extent, spatial orientation largely dictated by regurgitant volume and PA to RV gradient – ie when severe JET IS BRIEF
- VC less well validated than other valves, but likely more reliable than jet area. Cutoffs not established

CW Doppler in PR
- End diastolic velocity of PR allows calculation of PA end diastolic pressure = \(4v^2\)
- Dense jet correlates with more severe PR
- Rapid deceleration rate consistent with severe PR but affected by RV status, filling pressures

Consequences of severe PR
- Progressive RV dilation
- Reduced RV function
- CHF
- QRS prolongation, ventricular arrhythmias, and sudden death.
Subject to significant errors due to difficulties of measurement of pulmonic annulus and a dynamic RVOT; not well validated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Utility, advantage</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV size</td>
<td>RV enlargement sensitive for chronic</td>
<td>Enlargement seen in other conditions</td>
</tr>
<tr>
<td></td>
<td>significant PR. Normal size virtually</td>
<td></td>
</tr>
<tr>
<td></td>
<td>excludes</td>
<td></td>
</tr>
<tr>
<td>Paradoxical septal motion</td>
<td>Simple sign of severe PR</td>
<td>Not specific for PR</td>
</tr>
<tr>
<td>(volume overload pattern)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet length-color flow</td>
<td>Simple</td>
<td>Poor correlation with severity of PR</td>
</tr>
<tr>
<td>Vena contracta width</td>
<td>Simple, quantitative method that works well</td>
<td>More difficult to perform; requires good images</td>
</tr>
<tr>
<td></td>
<td>for other valves</td>
<td>of pulmonary valve; lacks published validation</td>
</tr>
<tr>
<td>Jet deceleration rate-CW</td>
<td>Simple</td>
<td>Sleep deceleration not specific for severe PR</td>
</tr>
<tr>
<td>Flow quantitation-PW</td>
<td>Quantitates regurgitant flow and Fraction</td>
<td>Subject to significant errors due to difficulties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of measurement of pulmonic annulus and a dynamic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RVOT; not well validated</td>
</tr>
</tbody>
</table>

Disadvantages:

- Utility, advantage Parameter

| Pu
tom
| Re
gur
| ati
| on

RV enlargement sensitive for chronic significant PR. Normal size virtually excludes.

Enlargement seen in other conditions.

Simple sign of severe PR.

Not specific for PR.

Simple, quantitative method that works well for other valves.

More difficult to perform; requires good images of pulmonary valve; lacks published validation.

Simple

Sleep deceleration not specific for severe PR.

Quantitates regurgitant flow and Fraction.

Subject to significant errors due to difficulties of measurement of pulmonic annulus and a dynamic RVOT; not well validated.

Disadvantages:

- Utility, advantage Parameter

RV enlargement sensitive for chronic significant PR. Normal size virtually excludes.

Enlargement seen in other conditions.

Simple sign of severe PR.

Not specific for PR.

Simple, quantitative method that works well for other valves.

More difficult to perform; requires good images of pulmonary valve; lacks published validation.

Simple

Sleep deceleration not specific for severe PR.

Quantitates regurgitant flow and Fraction.

Subject to significant errors due to difficulties of measurement of pulmonic annulus and a dynamic RVOT; not well validated.

Disadvantages:

- Utility, advantage Parameter

RV enlargement sensitive for chronic significant PR. Normal size virtually excludes.

Enlargement seen in other conditions.

Simple sign of severe PR.

Not specific for PR.

Simple, quantitative method that works well for other valves.

More difficult to perform; requires good images of pulmonary valve; lacks published validation.

Simple

Sleep deceleration not specific for severe PR.

Quantitates regurgitant flow and Fraction.

Subject to significant errors due to difficulties of measurement of pulmonic annulus and a dynamic RVOT; not well validated.

Disadvantages:

- Utility, advantage Parameter

RV enlargement sensitive for chronic significant PR. Normal size virtually excludes.

Enlargement seen in other conditions.

Simple sign of severe PR.

Not specific for PR.

Simple, quantitative method that works well for other valves.

More difficult to perform; requires good images of pulmonary valve; lacks published validation.

Simple

Sleep deceleration not specific for severe PR.

Quantitates regurgitant flow and Fraction.

Subject to significant errors due to difficulties of measurement of pulmonic annulus and a dynamic RVOT; not well validated.

Disadvantages:

- Utility, advantage Parameter

RV enlargement sensitive for chronic significant PR. Normal size virtually excludes.

Enlargement seen in other conditions.

Simple sign of severe PR.

Not specific for PR.

Simple, quantitative method that works well for other valves.

More difficult to perform; requires good images of pulmonary valve; lacks published validation.

Simple

Sleep deceleration not specific for severe PR.

Quantitates regurgitant flow and Fraction.

Subject to significant errors due to difficulties of measurement of pulmonic annulus and a dynamic RVOT; not well validated.
PR Therapy

- No medical therapy has been demonstrated to be effective in reducing the degree of PR
- PV replacement for Symptoms
 - arrhythmias
 - decreased RV systolic function (ejection fraction 40%)
 - progressive RV dilation (MR RV EDV ≥ 160 mL/m² or ≥ 82 mL/m² for RV ESV)
 - decline in functional aerobic capacity
 - moderate TR due to progressive annular dilatation
 - Severe PR in pt requiring another cardiac operation
 - Prolonged or ↑ QRS duration (total QRS duration 180 milliseconds or QRS duration increase > 3.5 ms/y)

Results of PV replacement for severe PR

- RV size tends to normalize and functional status improves after PV replacement for PR late after tetralogy of Fallot
- RV function may not fully recover once marked enlargement and systolic dysfunction are evident.