Profile

Mary G. Sorci-Thomas, Ph.D.Wake Forest School of Medicine

Mary G. Sorci-Thomas, Ph.D.

Professor,

Contact Information

Academic: 336-716-2147 | Department: 336-716-2147

Email: msthomas@wakehealth.edu

Education & Training

  • B.S., Louisiana State University & A&M College , 1979
  • Ph.D., Wake Forest University , 1984
  • Fellowship, Stony Brook School of Medicine, 1987
Mary G. Sorci-Thomas, Ph.D.

Mary G. Sorci-Thomas, Ph.D.

Professor, Molecular Medicine
Hypertension and Vascular Research Center

Research Interests

atherosclerosis/thrombosis, metabolism, structural biology, transgenics

Contact Information

Academic: 336-716-2147 | Department: 336-716-2147

Email: msthomas@wakehealth.edu

Recent Publications

Liu M, Seo J, Allegood J, Bi X, Zhu X, Boudyguina E, Gebre AK, Avni D, Shah D, Sorci-Thomas MG, Thomas MJ, Shelness GS, Spiegel S, Parks JS. Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. J Biol Chem. 2014;289(5):2801-2814.

Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, Bittman R, Tall AR, Chen SH, Thomas MJ, Kreisel D, Swartz MA, Sorci-Thomas MG, Randolph GJ. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123(4):1571-1579.

Sorci-Thomas MG, Thomas MJ. Why targeting HDL should work as a therapeutic tool, but has not. J Cardiovasc Pharmacol. 2013;62(3):239-246.

Pollard RD, Fulp B, Samuel MP, Sorci-Thomas MG, Thomas MJ. The conformation of lipid-free human apolipoprotein A-I in solution. Biochemistry. 2013;52(52):9470-9481.

Liu MX, Seo JM, Allegood J, Bi X, Zhu XW, Boudyguina E, Gebre AK, Sorci-Thomas M, Thomas MS, Shelness GS, Spiegel S, Parks JS. Overexpression of apoM in liver stimulates formation of larger, apoM/S1P-enriched plasma HDL [abstract]. Circulation. 2013;128(22 Suppl):A19183.

Sorci-Thomas MG, Zabalawi M, Bharadwaj MS, Wilhelm AJ, Owen JS, Asztalos BF, Bhat S, Thomas MJ. Dysfunctional HDL containing L159R ApoA-I leads to exacerbation of atherosclerosis in hyperlipidemic mice. Biochim Biophys Acta. 2012;1821(3):502-512.

Sorci-Thomas MG, Owen JS, Fulp B, Bhat S, Zhu X, Parks JS, Shah D, Jerome WG, Gerelus M, Zabalawi M, Thomas MJ. Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J Lipid Res. 2012;53(9):1890-1909.

Sorci-Thomas MG, Thomas MJ. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler Thromb Vasc Biol. 2012;32(11):2561-2565.

Potteaux S, Gautier EL, Hutchison SB, van Rooijen N, Rader DJ, Thomas MJ, Sorci-Thomas MG, Randolph GJ. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression. J Clin Invest. 2011;121(5):2025-2036.

Bhat S, Sorci-Thomas MG, Calabresi L, Samuel MP, Thomas MJ. Conformation of dimeric apolipoprotein A-I milano on recombinant lipoprotein particles. Biochemistry. 2010;49(25):5213-5224.

Wilhelm AJ, Zabalawi M, Owen JS, Shah D, Grayson JM, Major AS, Bhat S, Gibbs DP Jr, Thomas MJ, Sorci-Thomas MG. Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr-/-, ApoA-I-/- mice. J Biol Chem. 2010;285(46):36158-69.

Bhat S, Bhat S [sic], Sorci-Thomas MG, Shah DP, Owen JS, Zabalawi M, Samuel MP, Thomas MJ. Biosynthesis of nascent HDL by ABCA1: what does lipid composition tell us about their formation? [abstract]. Arterioscler Thromb Vasc Biol. 2010;30(11):e281.

Wang WL, Xu H, Shi Y, Nandedkar S, Zhang H, Sorci-Thomas M, Pritchard KA. The role of apolipoprotein A-I and 4F, an ApoA-I mimetic, in attenuation of pulmonary inflammation and airway hyperresponsiveness [abstract]. Arterioscler Thromb Vasc Biol. 2010;30(11):e277.

Wilhelm AJ, Zabalawi M, Grayson JM, Major AS, Owen JS, Bhat S, Gibbs DP, Thomas MJ, Sorci-Thomas MG. Apolipoprotein A-I improves the regulatory T-cell response in autoimmune LDLr-/-, ApoA-I-/- mice [abstract]. Arterioscler Thromb Vasc Biol. 2010;30(11):e269.

Wang W, Xu H, Shi Y, Nandedkar S, Zhang H, Gao H, Feroah T, Weihrauch D, Schulte ML, Sorci-Thomas M, et al. Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung. J Lipid Res. 2010;51(9):2560-2570.

Sorci-Thomas MG, Bhat S, Thomas MJ. Activation of lecithin: cholesterol acyltransferase by HDL ApoA-I central helices. Clin Lipidol. 2009;4(1):113-124.

Wilhelm AJ, Zabalawi M, Grayson JM, Weant AE, Major AS, Owen J, Bharadwaj M, Walzem R, Thomas MJ, Sorci-Thomas MG, et al. Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity. Arterioscler Thromb Vasc Biol. 2009;29(6):843-849.

Bhat S, Sorci-Thomas MG, Owen JS, Calabresi L, Thomas MJ. Characterization of nascent HDL formed with wild-type ApoA-I and its mutant forms [abstract]. Arterioscler Thromb Vasc Biol. 2009;29(7):e106-e107.

Carnemolla R, Sontag TJ, Djunaidi AC, Sorci-Thomas M, Reardon CA, Getz GS. The specific amino acid sequence between putative helices 7 and 8 of human apolipoprotein A-I yields nascent high-density lipoprotein (HDL) of different size and density: a potential for individual HDL class generation [abstract]. Arterioscler Thromb Vasc Biol. 2009;29(7):e105-e106.

Wilhelm AJ, Zabalawi M, Grayson JM, Weant AE, Major AS, Owen JS, Thomas MJ, Sorci-Thomas MG. Apolipoprotein A-I: a common link between inflammation, atherosclerosis, and autoimmunity [abstract]. Arterioscler Thromb Vasc Biol. 2009;29(7):e13.

Zabalawi M, Wilhelm AJ, Thomas MJ, Owen J, Bhat S, Remaley AT, Sorci-Thomas MG. Treatment with apoA-I reverses inflammation and cholesterol deposition in the skin and lymph nodes of LDLr-/-, apoA-I-/- mice [abstract]. Arterioscler Thromb Vasc Biol. 2009;29(7):e26.

Wilhelm AJ, Zabalawi M, Grayson J, Weant AE, Sorci-Thomas M. Absence of ApoA-I leads to dysregulation of lymph node immune cell cholesterol homeostasis and increased atherosclerosis in LDLr-/-, ApoA-I-/- mice [abstract]. Arterioscler Thromb Vasc Biol. 2008;28(6):e-65.

Thomas MJ, Bhat S, Sorci-Thomas MG. Three-dimensional models of HDL apoA-I: implications for its assembly and function. J Lipid Res. 2008;49(9):1875-1883.

Owen JS, Bharadwaj MS, Thomas MJ, Bhat S, Samuel MP, Sorci-Thomas MG. Ratio determination of plasma wild-type and L159R apoA-1 using mass spectrometry: tools for studying apoA-1Fin. J Lipid Res. 2007;48(1):226-234.

Zabalawi M, Bharadwaj M, Horton H, Cline M, Willingham M, Thomas MJ, Sorci-Thomas MG. Inflammation and skin cholesterol in LDLr-/-, apoA-I-/- mice: link between cholesterol homeostasis and self-tolerance?. J Lipid Res. 2007;48(1):52-65.

Bharadwaj MS, Zabalawi M, Owen JS, Thomas MJ, Zannis VI, Duka A, Sorci-Thomas MG. ApoA-I FIN partially prevents cholesterol deposition and inflammation in skin and lymph nodes of diet-fed LDLr-/-, ApoA-I-/- mice [abstract]. Arterioscler Thromb Vasc Biol. 2007;27(6):e-124.

Zabalawi M, Bharadwaj MS, Tang LJ, Sorci-Thomas MG. Reduced plasma corticosterone levels in LDLr-/-, ApoA-I-/- mice: a model to study the role of HPA axis in the metabolic syndrome [abstract]. Arterioscler Thromb Vasc Biol. 2007;27(6):e-94.

Bhat S, Sorci-Thomas MG, Tuladhar R, Samuel MP, Thomas MJ. Conformational adaptation of apolipoprotein A-I to discretely sized phospholipid complexes. Biochemistry. 2007;46(26):7811-7821.

All Publications

For a listing of recent publications, refer to PubMed, a service provided by the National Library of Medicine.

For a list of earlier publications, visit the Carpenter Library Publication Search.

Mary G. Sorci-Thomas, Ph.D.

Mary G. Sorci-Thomas, Ph.D.

Professor, Molecular Medicine
Hypertension and Vascular Research Center

Contact Information

Academic: 336-716-2147 | Department: 336-716-2147

Email: msthomas@wakehealth.edu

Research Focus:

My lab group has been interested in elucidating the role that high density lipoprotein (HDL) apo A-I plays in preventing coronary heart disease. Studies have shown that plasma HDL apo A-I plays a "protective function" and mitigates the effects of high levels of atherogenic lipoproteins through its ability to accept, organize and transport cholesterol out of the artery wall to the liver for uptake and excretion into bile. This "reverse cholesterol transport pathway" is highly dependent upon apo A-I's ability to bind lipids and form nascent HDL particles that circulate in plasma. If concentrations of HDL apo A-I particles are low or if their uptake by the liver is reduced or blocked, then increased plasma cholesterol levels can trigger an inflammatory responses leading to heart disease and stroke.

Interrelationship Between Autoimmunity and Atherosclerosis

One ongoing project in my lab has been to investigate the role of HDL apo A-I concentrations in reducing the development of autoimmunity and atherosclerosis. Since the immune system is a complex system with multiple layers of regulation to prevent reactions against self-antigens, or autoimmune disorders, it is possible that accumulation of cholesterol may alter cellular function to a point at which peripheral self-tolerance is lost.  We have been particularly interested in the role of T cell activation and effector T cell response in autoimmunity and atherosclerosis. HDL apo A-I appears to be linked to autoimmunity, since individuals with decreased levels of HDL apo A-I are more likely to develop autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. In hypercholesterolemic mice lacking HDL apo A-I an autoimmune phenotype develops in response to the consumption of a cholesterol containing diet.  These mice show heightened lymph node immune cell activation, proliferation and severe skin lesions. Interestingly these mice also show an increased population of T regulatory cells which are designed to modulate T cell activation. These results suggest that the Treg response under low HDL apo A-I conditions may lead to defective regulation of tolerance in these mice.  A cartoon of this hypothesis is shown in Figure 1.

MSTfigure1

Figure 1. Autoimmunity and the Activation of Peripheral T Cells and their Impact on the Progression of Atherosclerosis. Recent studies have shown that the adaptive immune system is involved in the development of atherosclerosis. One model involves the entry of LDL into tissue where it can be modified or oxidized, termed (OxLDL).  Ox LDL may act as candidate antigens in peripheral tissue, such as skin (left panel) as well as in the vasculature (right panel). The exact location of initial antigen presentation is atherosclerosis is not known, but macrophages and DCs acquire and process antigens for presentation (APC) to T cells in peripheral lymph nodes. Continuous trafficking of immune cells between the inflamed artery and the lymph node may be necessary to mount an adaptive immune response. DC maturation by self-altered molecules may be regulated by T regulatory cells (Treg) that suppress immune activation and maintain tolerance.   In some cases, Tregs do not suppress APC activation leading to mature APC and a pathogenic immune response which can induce either a Th1 or Th2 pathogenic responses.

Formation of Nascent HDL

Another important area of research currently being studied in my lab concerns the formation of nascent HDL (nHDL) apo A-I particles. Since the concentration of HDL apo A-I varies greatly within the human population we are interested in determining the mechanism explaining how nascent HDL particles are formed.  One approach we are using is to investigate the composition of the particles formed following the interaction between apo A-I and the ATP binding cassette transporter A1 (ABCA1) which transports cholesterol out of the cell onto the outer leaflet of the cellular membrane. To our surprise we have found that the lipid compositions of nHDL as determined by LC-MS/MS contain a large amount of sphingomyelin and suggest that lipid rafts may significantly contribute to the ABCA1 mediated formation of newly formed nascent HDL apo A-I particles. In addition, we are also using mass spectrometry techniques to determine the conformation of apo A-I on this small lipid containing particles. These molecular studies are useful in solving the structure of lipid bound proteins which are responsible for activating important plasma enzymes such as the lecithin:cholesterol acyltransferase (LCAT) as shown in Figure 2. 

Sorci-ThomasFigure2

Figure 2. Molecular Models Depicting the Activation of Lecithin:Cholesterol Acyltransferase (LCAT) by High Density Lipoprotein (HDL) Apo A-I.  Molecular models of the plasma enzyme LCAT (yellow atoms) and the lipoprotein HDL containing two molecules of apo A-I (green, orange, white and purple atoms) are shown before docking at helix 6 of one monomer of apo A-I (purple atoms). Helix 6 residues of apo A-I correspond to amino acids #143-164, shown in purple, flanked by helices 5 and 7, shown in orange, while all other apo A-I amino acids are shown in green. The LCAT region corresponding to amino acids #121 to 136, has been highlighted with blue atoms and indicates where LCAT binds HDL (blue arrow points to this region). The model of LCAT contains amino acids #9 through 420 of the pro-form of LCAT and is available at ModBase (http://modbase.compbio.ucsf.edu) with the primary database link P04180. The structure was rendered with MacPyMOL (http://www.pymol.org).

Publications:

Link to PubMed Database

 

Mary G. Sorci-Thomas, Ph.D.

Mary G. Sorci-Thomas, Ph.D.

Professor, Molecular Medicine
Hypertension and Vascular Research Center

Quick Reference

Request an Appointment
New Patients

336-716-WAKE
888-716-WAKE

Existing patients may contact the clinic directly.
Find a Doctor Ways to Give
USNWR 2013-2014Magnet Hospital RecognitionConsumer Choice2014 Best DoctorsJoint Commission Report

Disclaimer: The information on this website is for general informational purposes only and SHOULD NOT be relied upon as a substitute for sound professional medical advice, evaluation or care from your physician or other qualified health care provider.