Timothy E. Long, PhD

Timothy E. Long, Ph.D., Professor

Dr. Long is a Professor of Chemistry at the Macromolecules and Interfaces Institute (MII) at Virginia Tech. He received his Ph.D. from Virginia Tech in 1987 under the direction of University Distinguished Professor James E. McGrath. He worked as a research scientist at Eastman Kodak until 1993 and at Eastman Chemical Company until 1998. In 1998 he joined the faculty in the department of Chemistry at Virginia Tech, and was promoted to Associate Professor in 2001 and to Professor in 2003. He has generated more than $25 million in research funding at Virginia Tech. He currently directs an international research group of 15 Ph.D. graduate students and 4 postdoctoral fellows. He has published more than 125 peer-reviewed publications, 17 book chapters, and edited 3 books. Prof. Long directs several multimillion research programs with the Department of Defense and the National Science Foundation.

SYNOPSIS OF AREA OF INTEREST: Our research goal is to integrate fundamental research in novel macromolecular structure and polymerization processes with the development of high performance macromolecules for advanced technologies. Our research platforms focus on the design, performance, and societal implications of novel biomaterials for the following global impact: (1) gene/drug delivery, (2) tissue regeneration, and (3) biomedical devices. These three complementary platforms provide cutting-edge research opportunities and significant impact on global health, while also providing sufficient breadth for the alignment of universities and international organizations.

DETAILED AREA OF INTEREST: Our research team focuses on the development and study of water-soluble polycations, particularly segmented block copolymer structures, for the binding, encapsulation, and delivery of anionic drugs and nucleic acids into cultured cells. We currently examine the structure-property effects of incorporating different cationic groups into these structures such as histidine-mimics and quaternary ammonium and phosphonium groups, and investigate the influence of nucleobase substitution in vector design, which may lead to novel binding strategies.

Additional research builds on the discovery in the Long laboratories to fabricate nanometer-scale scaffolds based on nature-derived phospholipids and new families of photo-reactive amphiphiles. Recent efforts include focus on biomaterials for stents for sensing force needed to employ a device and also the incidence of tissue re-growth near the device interface with biological structure and biomaterial alternatives to acid-generation during polylactide absorption. Research efforts utilize the synthesis and characterization of charged polyurethanes for subsequent performance as an elastomeric electromechanical transducer.

In addition to macromolecular chemistry and engineering at the interface with biology, our research group also addresses fundamental questions involving ionic liquids, charged polymers for electroactive devices, fuel cell membranes, novel adhesives, block copolymer elastomers, high impact engineering thermoplastics, and responsive polymer compositions based on tailored hydrogen bonding and electrostatic interactions. Recent efforts in self-healing compositions offer promise for novel families of cationic polymers. 

Quick Reference

Institute for Regenerative Medicine

Phone 336-713-7293
Fax 336-713-7290

Richard H. Dean Biomedical Building
391 Technology Way
Winston-Salem, NC 27101
Find A Doctor Ways to Give
Last Updated: 03-31-2015
USNWR 2013-2014Magnet Hospital RecognitionConsumer Choice2014 Best DoctorsJoint Commission Report

Disclaimer: The information on this website is for general informational purposes only and SHOULD NOT be relied upon as a substitute for sound professional medical advice, evaluation or care from your physician or other qualified health care provider.