TCD in Sickle Cell Disease

Charles H. Tegeler, MD
McKinney-Avant Professor of Neurology
Director, Comprehensive Stroke Center
Director, Ward A. Riley Ultrasound Center
Director, Neurosonology Laboratory
WFUSM

TCD in Sickle Cell Disease

Outline
- Review importance of SCD and stroke
- TCD helped identify high risk
- The STOP Study
- Putting TCD into practice for SCD

TCD in Sickle Cell Disease

Background
- About 80,000 with severe SCD in USA
- Stroke is frequent complication of SCD
- 11% stroke prevalence by age 20
- Mostly large artery territorial infarctions
- 75% are ischemic infarctions
- Average age of stroke victims 4 years
- Frequent occlusions of d-ICA, MCA

TCD in Sickle Cell Disease

Background
- Nature of occlusions still not clear
- Seems to involve inflammatory vasculopathy
- Possible role for plasma free hemoglobin released by hemolysis, and effect on Nitric Oxide
 Adams RJ, Arch Neurol 2007;64:1567-74

TCD in Sickle Cell Disease

Background
- Ischemic infarctions more common in kids
- Hemorrhages more common in adults
- Hemorrhage often SAH; can be ICH in deep structures such as thalamus
- Many hemorrhages related to “moya-moya” changes from earlier occlusions/strokes
TCD in Sickle Cell Disease
Silent Infarctions

- New methods (MRI) show about 20% rate of silent infarctions (SI) in SCD patients
- Increased risk of SI if lower HCT, history of seizure, lower painful event rate, higher WBC count
- SI associated with cognitive deficits and poor school performance

TCD in Sickle Cell Disease
Silent Infarctions

- Children with SI had 2X > school problems
- 80% with SI had clinically significant cognitive deficits, 35% deficits in academic skills
- SI on MRI more frequent in girls < 6 yrs, boys until age 10
- SI smaller, less in frontal or parietal lobes

Schatz J, et al, Neurology 2001;56:1109-11

TCD in Sickle Cell Disease
Silent Infarctions

- Children with SI have increased incidence of new stroke (1.03/100 pt-yrs), and new or more extensive SI lesions (7.06/100 pt-yrs) vs. those without SI (0.54/100 pt-yrs)
- Chronic transfusion decreases risk of new SI or stroke, but risk/benefit unclear
- CBF by CASL MRI has inverse correlation with cognitive function in SCD children

Pegelow CH 2002
Strouse JJ, et al, 2006

TCD in Sickle Cell Disease
Transfusions

- Transfusions known to reduce stroke rate but cannot be uniformly applied
- Financial analysis shows $9828-50,852/pt-yr for SCD with chronic transfusion
- If chelation needed, mean $39,779/pt-yr
- Cost of chronic transfusion Rx for SCD approaching $400,000/pt-decade

Wayne AS, Blood 2000

TCD in Sickle Cell Disease
Background

- Lacked marker of high risk to guide Rx
- TCD shown feasible in SCD patients
- MFV in SCD higher than normal children
- TCD readily ID’d intracranial lesions
- TCD changes shown to identify
- Risk could be stratified based on TCD mean velocities

Transcranial Color Duplex Sonography in SCD
Right MCA: Normal
Transcranial Color Duplex Sonography in SCD
Left MCA: “Normal per STOP”

Transcranial Color Duplex Sonography in SCD
Left T-ICA: Abnormal 192 cm/s Vmean

Transcranial Color Duplex Sonography in SCD
Right T-ICA: Abnormal 240 cm/s Vmean

MR-A in Sickle Cell Disease
5 year old without symptoms
MR-A unremarkable

MR-A in Sickle Cell Disease
Now age 9 with tight MCA stenosis
TCD in Sickle Cell Disease

Normals in SSD Children

- Normal velocities higher due to age/anemia
- MCA Vmax 168 +/- 38 cm/s
- MCA Vmean 115 +/- 31 cm/s
- ACA Mmax 138 +/- 34 cm/s
- ACA Vmean 94 +/- 28 cm/s
- Abnormal 2 SD above these normal values

Adams RJ et al, 1989

Accumulation of stroke in SCD with normal, conditional, or abnormal TCD results

40% stroke in 3 years for abnormal group

TCD in Sickle Cell Disease

The STOP Study

- STOP was a multi-center, randomized, controlled clinical trial testing whether TCD screening, followed by transfusions could prevent first stroke in patients with SCD ages 2-16 (vs. standard clinical care)
- First study to use TCD as inclusion criteria for multi-center effort

TCD in Sickle Cell Disease

Methods for STOP Study

- Sickle Cell or Sickle Thal, age 2-16
- TCD by standard protocol & instrument (Nicolet/EME TC-2000)
- Sonographers trained in protocol
- Centralized blinded reading at MCG
- Sampling at 2 mm intervals
- Called NL, Conditional, Abnl, Inadequate
TCD in Sickle Cell Disease

Methods for STOP Study
- >200 cm/s in ICA or MCA on two studies
- Studies one week to one month apart
- Randomized to standard care or transfusion
- Transfusion target of <30% Hgb S
- Ongoing transfusions q 3-4 weeks
- Primary study endpoints of stroke or ICH

Results for STOP Study
- TCD screening of 1,934 children
- Overall, 9.7% abnormal studies
- Higher % abnormal in younger patients
- 79 initially normal, later turned abnormal
- Of 266 abnormal, 85% abnormal on repeat
- Finally, 130 children enrolled

Results of STOP Study
- Cohort of 130 with 60 boys, 70 girls
- Mean age 8.3 years
- 63 to transfusion Rx; 67 to standard care
- Initial Hgb/HCT slightly lower in Rx group
- No other baseline differences

29 potential events in 23 patients
Adjudication confirmed 11 events in the control group, and 1 in the Rx group
One event was ICH
Statistically significant (p<0.001) with 92% relative risk reduction
If ICH excluded, still p=0.002

NIH Clinical Alert issued and rec’d TCD screening of SCD patients age 2-16

Adams RJ, Arch Neurol 2007;64:1571
TCD in Sickle Cell Disease

STOP Study Caveats
- 10 patients dropped out of Rx group
- 9 in Rx group got allo-immunization
- When Rx to >250ml/kg, chelation required for high ferritin levels (>2500 mg/l)
- No answer for how long Rx required
- STOP 2 showed reversion to abnormal study and stroke risk when transfusion D/C’d

Applying Results
- Don’t do if patient asleep, just aroused, acutely ill, febrile, or agitated
- Confirm repeat study in 1-4 weeks
- Screen q 6-12 months in younger patients
- One screening not sufficient due to variability
- 18 month rate of conversion from conditional to abnormal reported at 23% (Hankins JS, et al 2008)

Practical Application
- Utilization of TCD for screening in SCD appears to be less than optimal
- Suggested only about 50% eligible patients get yearly screenings
- High no-show/cancellation rates
- Missed appts (20-80%); must overbook

TCD in Sickle Cell Disease

Applying Results
- Similar TCD instrument, training, method/protocol, and criteria
- Search MCA & ICA at 2 mm increments
- Study all segments but MCA (85%) and dICA (12%) where Vmax found
- Optimize signal; use highest reading for time averaged mean max velocity

Practical Application
- HbSC TCD velocity cut points are lower
- 98 percentile cut point was 128 cm/s
- Stroke risk remains in adults with SCD, but TCD not as predictive in adults with SCD, and cannot be used for risk stratification in adults
 Valadi N et al, 2006
TCD in Sickle Cell Disease

Practical Application
- ACA velocities important also
- ACA MFV >170 cm/s confers increased risk of stroke, after adjustment for ICA/MCA
- Normal ICA/MCA, high ACA gives 10X risk
- If ICA/MCA abnormal, still 2X risk
- Few stroke events in ACA territory

TCD in Sickle Cell Disease

Criteria for linear transducers
- Lower velocities found to be up to 10% lower than studies with non-imaging probes
- May need to lower cut points to closer to 160-165 for conditional, and 185 for significant stroke risk, rather than 170 and 200 per the STOP Study.

 Bulas D, 2005
 Bulas DI, et al, 2000

TCD in Sickle Cell Disease

Conclusions
- Stroke with SCD is preventable
- TCD/TCCD identifies high risk patients and can guide use of Rx
- STOP is “home run” for stroke prevention
- NIH rec’s TCD for all SCD age 2-16
- Not effective screen in adults
- Must educate physicians, patients, insurers
- Needs collaborative team effort

TCD in Sickle Cell Disease

Applying Results: TCCD
- Many use TCCD or TC Power Duplex for intracranial testing
- Most use zero angle of insonation, assume correlations with conventional TCD acceptable for MCA, d-ICA, ACA
- Recent suggestion that TCDI with angle correction acceptable

TCD in Sickle Cell Disease

Questions Remain
- Mechanism of high velocity (stenosis vs hyperemia)?
- Mechanism of Rx effect?
- Correlations with MRA, CTA?
- How long to Rx?
- Would higher cut point be better?

TCD in Sickle Cell Disease

Conclusions
- Stroke with SCD is preventable
- TCD/TCCD identifies high risk patients and can guide use of Rx
- STOP is “home run” for stroke prevention
- NIH rec’s TCD for all SCD age 2-16
- Not effective screen in adults
- Must educate physicians, patients, insurers
- Needs collaborative team effort